Concentration-enhanced rapid detection of human chorionic gonadotropin (hCG) on a Au surface using a nanofluidic preconcentrator.
نویسندگان
چکیده
Here, we report a new method of concentration-enhanced binding kinetics for a rapid immunoassay screening test on a gold surface in a poly(dimethylsiloxane) (PDMS) microfluidic chip format. The use of alkylthiolate self-assembled monolayers on gold surfaces of a PDMS-glass microchip resulted in accelerated binding kinetics of Human chorionic gonadotropin (hCG) at an electrokinetic trapping zone. We used a PBS solution (buffer concentration ~ 150 mM), not a dibasic buffer system (~10 mM), for the dynamic preconcentrating operation and the preconcentration of cy3 labeled streptavidin onto biotinylated Au surface revealed that the binding kinetics of the protein were linearly proportional to the concentration profile of the preconcentration plug. We showed rapid detection of hCG in the clinical range with a shorten assay time of 10 min. Also, we demonstrated that the amount of sample needed were detection was decreased from ~4 mL to ~25 μL in the standard serum tests. The enhanced binding kinetics between hcG Ag-Ab via preconcentration showed good feasibility for use in a rapid immunoassay screening test.
منابع مشابه
Fabrication of an Electrochemical Immunosensor for Determination of Human Chorionic Gonadotropin Based on PtNPs/Cysteamine/AgNPs as an Efficient Interface
An ultrasensitive electrochemical immunosensor for the detection of tumor marker human chorionic gonadotropin (hCG) was developed with a limit of detection as low as 2 pg mL-1 in phosphate buffer. The Platinum nanoparticles (PtNPs) were electrodeposited to modify the gold surface and to increase enlarging the electrochemically active sites, resulting in the facilitation of electron exchange. Cy...
متن کاملThe potentiality of the functionalized nitrogen and thiol-doped graphene quantum dots (GQDs-N-S) to stabilize the antibodies in the designing of human chorionic gonadotropin immunosensor
In this study, for the first time, a simple immunosensor for ultrasensitive recognition of Human Chorionic Gonadotropin (hCG) in serum samples was fabricated by exploiting a simple approach. In this method, a low-cost and sensitive immunosensor was fabricated based on QDs-N-S/Au nanoparticles (NPs) modified Screen-Printed Carbon Electrode (SPCE). It seems that, QDs-N-S/Au NPs/ antibody as a bio...
متن کاملA facile and sensitive peptide-modulating graphene oxide nanoribbon catalytic nanoplasmon analytical platform for human chorionic gonadotropin
The nanogold reaction between HAuCl4 and citrate is very slow, and the catalyst graphene oxide nanoribbon (GONR) enhanced the nanoreaction greatly to produce gold nanoparticles (AuNPs) that exhibited strong surface plasmon resonance (SPR) absorption (Abs) at 550 nm and resonance Rayleigh scattering (RRS) at 550 nm. Upon addition of the peptide of human chorionic gonadotropin (hCG), the peptide ...
متن کاملA Graphene Oxide-Based Fluorescent Method for the Detection of Human Chorionic Gonadotropin
Human chorionic gonadotropin (hCG) has been regarded as a biomarker for the diagnosis of pregnancy and some cancers. Because the currently used methods (e.g., disposable Point of Care Testing (POCT) device) for hCG detection require the use of many less stable antibodies, simple and cost-effective methods for the sensitive and selective detection of hCG have always been desired. In this work, w...
متن کاملP-234: Expression of Human Chorionic Gonadotropin (hCG) Hormone Using Chinese Hamster Ovary Cells
Background: Human chorionic gonadotropin (hCG) is a member of glycoprotein hormones family consist of two different non-covalently heterodimeric chains: alpha and beta subunits with 92 and 145 amino acids respectively. This hormone plays an important role in human reproduction and physiology especially for maintenance of the corpus luteum during the first months of pregnancy Materials and Metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microfluidics and nanofluidics
دوره 9 4 شماره
صفحات -
تاریخ انتشار 2010